

Анализатор влажности "Аврора"

Измерение содержания влаги в природном газе в новом свете

В анализаторе "Аврора" компании GE для быстрого и точного измерения содержания влаги в природном газе используется метод абсорбционной спектроскопии с настраиваемым диодным лазером (tunable diode laser absorption spectroscopy - TDLAS). Этот анализатор пригоден для установки в опасных зонах и работает в широком диапазоне условий окружающей среды. Быстрая реакция анализатора "Аврора" позволяет незамедлительно предупреждать об опасности и документировать данные, когда концентрации влаги выходит за рамки допустимой величины. Как только сбои процесса устраняются и газ осушается, быстрая отклик прибора даёт разрешение на поступление природного газа в энергосистему.

Опыт компании GE в области измерения влажности охватывает датчики из оксида алюминия, полимерные ёмкостные датчики и датчики с охлаждаемым зеркалом. В историю компании GE входит также разработка первого инжекционного диодного лазера доктором Робертом Холлом в г. Скенектади, штат Нью-Йорк, в 1962 году. Компактный и недорогой диодный лазер сделал возможными производство компактных дисков, лазерных принтеров и телекоммуникации на основе волоконной оптики. Новый гигрометр "Аврора", в котором используется технология TDLAS, позволяет оборудованию по обработке и транспортировке газа контролировать содержание влаги в режиме реального времени с высокой точностью и достоверностью.

Характеристики и преимущества

- Оптическая реакция: <2 секунд
- Никакой перекрёстной чувствительности к гликолям или другим загрязняющим веществам
- Прямое считывание показаний в фунтах на миллион стандартных куб. футов (lbs/mmscf), мг/м³, значении точки росы или в миллионных долях на единицу объёма (ppm,)
- Готовая система отбора проб для обеспечения целостности измерений
- Программирование через стекло с помощью магнитного стилуса. Не требуется доступа в горячую зону.
- Сертификаты для опасных зон: cFMus Kласс I, Kat. 1, Группы С и D, ATEX & IECEx Ex de IIB T6
- Три программируемых сигнала уровня 4-20 мА—контроль качества газа 24X7
- Два цифровых порта интерфейса RS 485/232 с протоколом MODBUS RTU— прямое подключение к цифровым системам SCADA
- Поставляется с программным обеспечением AuroraView

 позволяет выполнять дистанционное считывание
 показаний, построение графиков трендов и диагностику
- Надёжность—рассчитан на пять лет непрерывной эксплуатации до первого заводского обслуживания

Работающий на основе технологии TDLAS гигрометр "Аврора" для природного газа является системой, предназначенной для непрерывного контроля содержания влаги в природном газе. В принципе, он измеряет парциальное давление водяных паров (воды в газообразном состоянии). При одновременном измерении давления и температуры гигрометр "Аврора" даёт все общеупотребительные единицы влажности, включая:

- Объёмное соотношение в миллионных долях на единицу объёма (ppm.)
- Абсолютную влажность в фунтах на миллион стандартных кубических футов (lbs/mmscf) или миллиграммах на кубический метр (мг/м³)
- Температуру точки росы в °С или °F
- Точку росы при данном давлении в °С или °F

Принципиальное измерение давления водяных паров базируется на законе Бера-Ламберта:

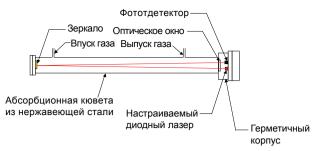
$$A = In\left(\frac{I_0}{I}\right) = SLN$$

А = Поглошение

Іо = Интенсивность падающего света

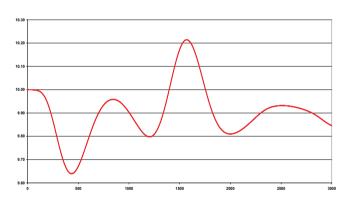
I = Интенсивность света, пропускаемого пробой газа

S = Коэффициент поглощения*


L = Длина пути поглощения (константа)

N = Концентрация водяных паров (напрямую связанная

с соотношением парциального давления воды


и полного давления)

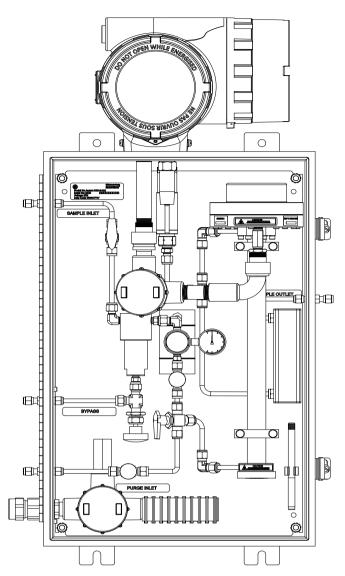
*Коэффициент поглощения - это константа для конкретного состава газа при заданном давлении и заданной температуре.

Поперечный разрез абсорбционной кюветы

При определённых специфических частотах молекула воды будет поглощать световую энергию, в то время как при других частотах газ является практически прозрачным. При заданной частоте поглощения по мере увеличения концентрации водяных паров поглощение также увеличивается. В гигрометре "Аврора" используется диодный лазер, частота которого ступенчато качается в узком диапазоне частот в ближней инфракрасной области спектра. Лазер также модулируется на высокой частоте. Измеряя интенсивность света лазера фотодетектором, гигрометр "Аврора" способен выполнять непосредственное измерение парциального давления воды путём соотнесения потери света лазера с падающим светом. Потеря света, или сигнал поглощения, уменьшается путём рассмотрения сигнала второй гармоники, известного как сигнал 2F. Величина сигнала 2F соотносится с парциальным давлением воды. Парциальное давление, делённое на полное давление и умноженное на 106. даёт ppmv (миллионные доли на единицу объёма).

Расположение пика по оси X подтверждает обнаружение воды. Ось Y связана с парциальным давлением воды и поэтому - с концентрацией. Система снабжена программным обеспечением AuroraView, которое позволяет пользователям зафиксировать спектр поглощения и экспортировать его в другие прикладные программы, такие как Excel™.

Свет от лазера проходит через оптическое окно, выполненное из патентованного материала, и отражается от позолоченного зеркала, а затем возвращается через окно, где он измеряется фотодетектором. Поскольку с технологическим газом контактирует только свет, а все намокающие компоненты сделаны из инертных материалов, эта технология не проявляет отклонения, характерного для гигрометров на базе датчиков.

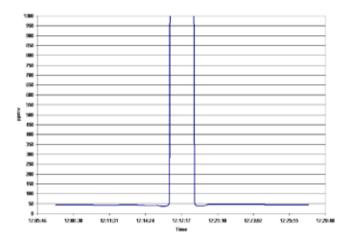

Гигрометр "Аврора" снабжён магнитно-индукционными клавишами, которые создают возможность программирования через стекло. Устройством можно управлять в опасных зонах без необходимости в допуске в горячую зону.

Источник питания лазера, контроллер и схемы формирования цифрового сигнала собраны во взрывозащищённом/ пожарозащищённом корпусе. Жидкокристаллический дисплей с подсветкой для трёх параметров обеспечивает прямое считывание программируемых пользователем параметров, а также индикацию статуса системы. Лазерный диод помещается в герметичном корпусе. В гигрометре "Аврора" используются магнитно-индукционные клавиши; поэтому пользователи могут программировать его при помощи магнитного стилуса, что исключает необходимость в допуске в горячую зону.

Вся система сертифицирована для использования в опасных зонах. Гигрометр "Аврора" обеспечивает очень быструю реакцию. После продувки кюветы для пробы, система реагирует за несколько секунд.

Гигрометр "Аврора" снабжён тремя программируемыми аналоговыми выходами (0/4-20 мА) и двумя цифровыми портами (RS485/232) с протоколом MODBUS RTU. Устройство также оборудовано вспомогательным входным каналом на 4-20 мА для подключения к датчику технологического давления. Устройство идеально подходит для подключения к системам сбора данных или системам SCADA для долгосрочного мониторинга качества природного газа.

Гигрометр "Аврора" снабжён двухкаскадной готовой системой отбора проб. Необязательный первый каскад состоит из мембранного фильтра/регулятора, установленного непосредственно в трубопроводе. Он предотвращает попадание в пробоотборную линию любой жидкости (углеводорода, гликоля или воды в жидком состоянии). Давление трубопровода снижается при помощи регулятора. Когда газ попадает во второй каскад, он проходит через коалесцирующий фильтр, а регулятор давления дополнительно снижает давление. Расход регулируется игольчатым клапаном. В абсорбционную кювету попадает только чистый газ низкого давления. Для применения в холодных климатических условиях в корпусе можно установить дополнительный обогреватель. Обогреватель также служит для сохранения пробы в газообразном состоянии.

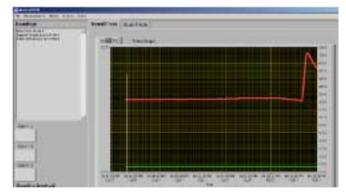


Система отбора проб—США и Канада

Система измерений на базе лазера обеспечивает очень быструю реакцию. Время оптической реакции <2 секунд. Эта система имеет возможность мгновенно обнаруживать сбои технологического процесса по влажности в системах осушения природного газа. После выполнения корректирующего действия гигрометр "Аврора" обеспечивает наибыстрейший отклик для подтверждения, что природный газ отвечает контрактным и тарифным требованиям.

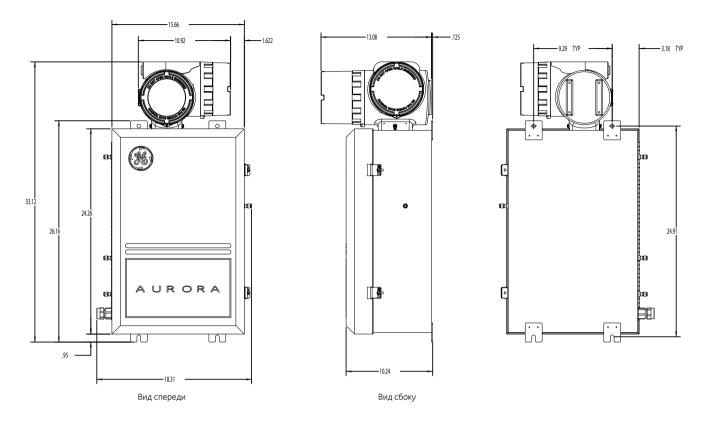
С пробой природного контактирует только свет маломощного лазера. Здесь нет смачиваемых чувствительных поверхностей, как при других технологиях измерения влажности. Все смачиваемые компоненты системы отбора проб и абсорбционная кювета сделаны из высококачественных некорродирующих материалов. Система предназначена для многолетней непрерывной работы с неизменной надёжностью. Заводское обслуживание или калибровку рекомендуется выполнять с интервалом в пять лет.

Каждое устройство "Аврора" калибруется по поверенному NIST (Национальный институт стандартов и технологий) (или другим государственным метеорологическим учреждением) генератору влажности или эталонному гигрометру. Предоставляется свидетельство о калибровке с данными функционального теста. Каждое устройство калибруется с использованием азота в качестве фонового газа, затем проверяется с использованием метана как фонового газа. Это нововведение позволяет пользователям проверять гигрометр "Аврора" с помощью азота с известной концентрацией воды.


Пример времени реакции гигрометра "Аврора" после сбоя в технологическом процессе. Вода была впрыснута в пробу природного газа, которая имела концентрацию 50 ppmv. Через несколько секунд гигрометр "Аврора" показал увеличение. Гигрометр "Аврора" возвратился к 50 ppmv за три минуты.

Программное обеспечение AuroraView для ПК

Система поставляется с программным обеспечением AuroraView, средством, которое позволяет этой системе взаимодействовать с удалёнными персональным компьютером. Приложение AuroraView позволяет выполнять считывание выбираемых пользователем параметров, построение графиков трендов и фиксацию спектрального скана. Данные трендов и спектральные сканы можно сохранять как текстовые файлы в формате ASCII, чо даёт возможность экспортировать данные в другие прикладные программы, например, в ExcelTM.



Приложение AuroraView имеет интуитивно-понятные меню для настройки параметров для отображения, посроения графиков и регистрации данных.

Приложение AuroraView выводит на экран непосредственные показания влажности, температуры и давления, а также графики трендов. Данные трендов можно экспортировать как текст формате ASCII и открывть в таких программах обработки электронных таблиц, как Ехсе^{[™}].

Размеры

Спецификации

Мощность

Анализатор

100-240 В переменного тока, 50-60 Гц, 10 Вт 18-32 В постоянного тока (номинал 24 В постоянного тока), 10 Вт

Дополнительный электрический обогреватель

120 В переменного тока 120 Вт

230 В переменного тока, 75 Вт

Диапазон

Миллионных долей на единицу объёма

от 5 до 5000 ppm.

Точка росы/замерзания¹

от -65,5° до -2,6°C точка замерзания

Точка росы/замерзания¹

от -85,9° до -2,61°C точка замерзания

Точка росы/замерзания технологического процесса1

Точка росы/точка замерзания технологического процесса или эквивалентная по расчёту с сигналом давления технологического процесса (4-20 мА) или константой

Абсолютная влажность

от 3,8 до 3 803 мг/м³

Абсолютная влажность

от 0,24 до 237 фунтов на миллион стандартных куб. футов

Точность

Миллионных долей на единицу объёма

±2% от показания или 4 ppmv

(Точность остальных параметров выводится из ppmv.)

Время реакции

Оптическая реакция

<2 секунд

Реакция системы

Реакция системы зависит от длины трубопровода отбора проб, компонентов системы отбора проб, расхода и давления, а также от изменения концентрации влаги.

Рабочее давление

Рабочее давление кюветы для образца

от 69 до 172 кПа (от 10 до 25 фунтов на кв. дюйм)

Максимальное давление

1380 кПа (200 фунтов на кв. дюйм)

Технологическое давление 10 342 кПа (1500 фунтов на кв. дюйм манометрич.) максимум²

² Более высокое давление допустимо при применении дополнительных компонентов системы отбора проб.

Температура

Рабочая

от -20 до 65°C (от -4 до 149°F)

Хранения

от -20 до 70°C (от -4 до 158°F)

Контрольная точка дополнительного обогревателя/термостата

25°C (77°F)

Расход

Расход кюветы для образца

от 10 до 60 SLH (от 0,4 до 2 SCFH); номинал 30 SLH (1 SCFH)

Быстрый контур в обход коагулятора

от 5 до 10Х от расхода через кювету для образца

Дисплей

Жидкокристаллический дисплей с подсветкой. Три программируемых одновременных параметра. Буквенноцифровой дисплей статуса и диагностики. Светодиоды для питания, стабильности температуры лазера и блокировки клавиатуры.

Ввод/вывод

Аналоговые выходы

Три программируемых выхода на 0/4-20 мА; макс. нагрузка 500 Ом

Аналоговый вход

Питаемый от замкнутого контура вход на 4-20 мА для удалённого датчика давления. Гигрометр "Аврора" подаёт 24 В постоянного тока.

Цифровой интерфейс

Два программируемых цифровых порта обмена данными Интерфейс RS232, RS485 с возможностью многоточечного соединения и назначаемым адресом, протокол MODBUS RTU

Корпус

Защита от несанкционированного доступа

IP-66

¹ Показания ниже 0°C (32°F) находятся в температуре "точки замерзания", а выше 0°C (32°F) находятся в температуре "точки росы".

Лазер

Изделие Класса 1. Соответствует стандарту ІЕС 60825-1. Редакция 2.0 Безопасность лазерных изделий

Предупреждение! Использование средств управления, или настроек, или порядка выполнения, отличных от указанных в этом документе может привести к опасному облучению лазером.

Интерфейс пользователя

Программируемый через стекло при помощи магнитного стилуса

Вес нетто

37 кг (100 фунтов)

Сертификаты для опасных зон

США/Канада

... Взрывозащищённый по Классу I, Категории 1, Группам С и D

ЕС и другие регионы

⟨Ex⟩ ATEX и IEC Ex: Ex de IIB T6 от -20°C до +65°C

Огнестойкий с отсеком повышенной безопасности

Европейская сертификация

CE

Соответствует директиве по ЭМС 2004/108/ЕС, Низкое напряжение, Директиве 2006/95/ЕС и Директиве по давлению 97/25/EC для DN/25

Калибровка

Рекомендуется заводская поверка/обслуживание Пять лет

ООО «Триумф-Инжиниринг»
ИНН: 7726358342, КПП: 772601001
Р/с №40702810000030007142 в ПАО АКБ «АВАНГАРД»
Кор/счет 3010181000000000201
БИК 044525201, ОРГН: 5157746013849
117105, г. Москва, Варшавское шоссе, 17
Телефон, факс: +7 (495) 786-39-52
info@3ymf.com, www.3ymf.com

www.gesensinginspection.com

920-468A

© 2009 General Electric Company. Все права сохранены. Спецификации могут быть изменены без предварительного уведомления. GE – зарегистрированный товарный знак General Electric Company. Другие наименования компаний или продуктов, упомянутые в данном документе, могут быть товарными знаками или зарегистрированными товарными знаками соответствующих компаний, которые не связаны с компанией GE.