Equipment II/II 10-20 kVA (Module 10 kVA) Equipment III/II 20-40 kVA (Module 20 kVA)

General index

1. INTRODUCTION.

1.1. ACKNOWLEDGEMENT LETTER.

2. INFORMATION FOR SAFETY.

- 2.1. USING THIS MANUAL.
- 2.1.1. Conventions and used symbols.

3. QUALITY AND STANDARD GUARANTEE.

- 3.1. DECLARATION OF THE MANAGEMENT.
- 3.2. STANDARD.
- 3.2.1. First and second environment.
- 3.2.1.1. First environment.
- 3.2.1.2. Second environment.
- 3.3. ENVIRONMENT.

4. PRESENTATION.

- 4.1. SYSTEM CONFIGURATION
- 4.2. MÓDULO DE POTENCIA.
- 4.3. OPERATION MODE
- 4.3.1. Normal Mode
- 4.3.2. Battery Mode
- 4.3.3. Bypass Mode
- 4.3.4. Maintenance Mode (Manual Bypass)
- 4.3.5. ECO Mode
- 4.3.6. Auto-restart Mode
- 4.3.7. Frequency Converter Mode
- 4.4. UPS STRUCTURE
- 4.4.1. UPS Configuration
- 4.4.2. UPS Outlook

5. INSTALLATION INSTRUCTION

- 5.1. LOCATION
- 5.1.1. Installation Environment
- 5.1.2. Site Selection
- 5.1.3. Size and Weight
- 5.2. UNLOADING AND UNPACKING
- 5.2.1. Moving and Unpacking of the Cabinet
- 5.2.2. Desembalaje del módulo de potencia

6. POSICIONAMIENTO A LA UBICACIÓN FINAL

- 6.1. ARMARIO
- 6.2. BATTERY
- 6.3. CABLE ENTRY

- 6.4. POWER CABLES
- 6.4.1. Specifications
- 6.4.2. Circuit Breaker
- 6.4.3. Conexión de los cables de potencia
- 6.5. CONTROL AND COMMUNICATION CABLES
- 6.5.1. Battery Warning Output Dry Contact Interface
- 6.5.2. Communication Interface

7. LCD PANEL

- 7.1. INTRODUCTION
- 7.2. LED INDICATOR
- 7.3. CONTROL AND OPERATION KEYS
- 7.4. PANTALLA TÁCTIL LCD
- 7.5. SYSTEM INFORMATION WINDOW
- 7.6. MENU WINDOW
- 7.7. EVENT LIST

8. OPERATIONS

- 8.1. UPS START-UP
- 8.1.1. Start from Normal Mode
- 8.1.2. Puesta en marcha a partir de las baterías.
- 8.2. PROCEDURE FOR SWITCHING BETWEEN OPERATION MODES
- 8.2.1. Switching the UPS into Battery Mode from Normal Mode
- 8.2.2. Switching the UPS into Normal Mode from Bypass Mode
- 8.2.3. Switching the UPS into Normal Mode from Bypass Mode
- 8.2.4. Switching the UPS into Maintenance Bypass Mode from Normal Mode
- 8.2.5. Switching the UPS into Normal Mode from Maintenance Bypass Mode
- 8.3. BATTERY MAINTENANCE
- 8.4. EPO
- 8.5. INSTALLATION OF PARALLEL OPERATION SYSTEM

9. MAINTENANCE

- 9.1. PRECAUTIONS
- 9.2. INSTRUCTION FOR MAINTAINING POWER MODULE

10. PRODUCT SPECIFICATION

- 10.1. APPLICABLE STANDARDS
- 10.2. ENVIRONMENTAL CHARACTERISTICS
- 10.3. MECHANICAL CHARACTERISTIC
- 10.4. ELECTRICAL CHARACTERISTICS (INPUT RECTIFIER)
- 10.5. CARACTERÍSTICAS ELÉCTRICAS (BUS DE CONTINUA DC)
- 10.6. ELECTRICAL CHARACTERISTICS (INVERTER OUTPUT)
- 10.7. ELECTRICAL CHARACTERISTICS (BYPASS MAINS INPUT)
- 10.8. EFFICIENCY
- 10.9. DISPLAY AND INTERFACE

1. INTRODUCTION.

1.1. ACKNOWLEDGEMENT LETTER.

We would like to thank you in advance for the trust you have placed in us by purchasing this product. Read this instruction manual carefully in order to be familiarized with its contents, because, as much as you know and understand the equipment the highest will be your satisfaction and safety levels and their features will be optimized too.

We remain at you entire disposal for any further information or any query you should wish to make.

Yours sincerely.

SALICRU

- The equipment here described can cause important physical damages due to wrong handling. This is why, the installation, maintenance and/or fixing of itself must be done by our staff or qualified personnel exclusively.
- Although we have made every effort to guarantee a complete and accurate information in this user's manual, we are not responsible for any errors or omissions that may exist.

The images included in this document are mere illustrations and they could not represent the part of the equipment exactly, therefore they are not contractual. Nevertheless, differences that could exist will be alleviated or solved with the correct labelling of the equipment.

- According to our policy of constant evolution, we reserve the right to modify the specifications, operating or described actions in this document without forewarning.
- Any reproduction, copy or third party concession, modification or partial or in whole translations of this manual or document, in any format or media, is prohibited without the previous written authorization of our firm, being reserved the full and exclusive ownership right over it.

2. INFORMATION FOR SAFETY.

2.1. USING THIS MANUAL.

The generic information of the equipment is supplied in digital format in a CD-ROM, and it includes among other documents the own user's manual of the system and the EK266*08 document concerning to **«Safety instructions»**. Before doing any action over the equipment regarding installation or commissioning, change of location, setting or handling, read them carefully.

This user's manual is intended to provide information regarding the safety and to give explanations about the procedures for the installation and operating of the equipment. Read them carefully and follow the stated steps in the established order.

Compliance as regards to "Safety instructions" is mandatory, being the user the legal responsible regarding to its observance and application.

The equipments are delivered duly labelled for the correct identification of any their parts, which combined with the instructions described in this user's manual, allows the end-user to make any operating of both installation and commissioning, in an easy and ordered way without doubt. When an equipment differs from the one shown in figures of section 4, additional annexes will be edited if they were deemed appropriate or necessary. Generally, they will be delivered in hardcopy.

Finally, once the equipment is installed and operative, for future requests or doubts that could arise, it is recommended to keep the CD-ROM documentation in a safe place with easy access.

The following terms are used in the document indistinctly to be referred to:

- «ADAPT, unit or UPS».- Uninterruptible Power Supply. Depending on the context of the sentence, it can be referred either to the own equipment or to the equipment with batteries, although all is assembled in one cabinet or metallic enclosure.
- •
- «T.S.S.».- Technical Service and Support.
- «client, fitter, operator or end-user».- are used indistinctly and by extension, to be referred to the fitter and/or operator which will make the corresponding actions, being responsible the same person about the actions to take on behalf of himself.
- In case of installations with IT neutral regime, the switches, circuit breakers must break the NEUTRAL a part from the three lines.

2.1.1. Conventions and used symbols.

Some symbols can be used and shown in the equipment and/or in the description of this user's manual.

For more information, see section 1.1.1 of EK266*08 document as regards to **«Safety instructions»**.

3. QUALITY AND STANDARD GUARANTEE.

3.1. DECLARATION OF THE MANAGEMENT.

Our target is the client's satisfaction, therefore this Management has decided to establish a Quality and Environmental policy, by means of installation a Quality and Environmental Management System that becomes us capable to comply the requirements demanded by the standard ISO 9001 and ISO 14001 and by our Clients and concerned parts too.

Likewise, the enterprise Management is committed with the development and improvement of the Quality and Environmental Management System, by means of:

- The communication to all the company about the importance of satisfaction both in the client's requirements and in the legal and regulations.
- The Quality and Environmental Policy diffusion and the fixation of the Quality and Environment targets.
- To carry out revisions by the Management.
- To provide the needed resources.

3.2. STANDARD.

The **SLC ADAPT**product is designed, manufactured and commercialized in accordance with the standard **EN ISO 9001** of Quality Management Systems and certified by SGS body. The **C €** marking shows the conformity to the EEC Directive by means of the application of the following standards:

- 2014/35/EU. Low Voltage Directive (LVD).
- 2014/30/EU. Electromagnetic Compatibility (EMC).
- 2011/65/EU. Restriction of Hazardous Substances in electrical and electronic equipment (RoHS).

In accordance with the specifications of the harmonized standards. Standards as reference:

- **IEC/EN 62103.** Electronic equipments for use in power installations.
- **IEC/EN 61000-6-4.** Electromagnetic compatibility. Generic norm of emission. Industrial environment.
- IEC/EN 61000-6-2. Electromagnetic compatibility. Generic norm of immunity. Industrial environment.

In case of any modification or intervention over the equipment by the end-user, the manufacturer is not responsible.

WARNING!:

SLC ADAPT This is a category C3 UPS product. This is a product for commercial and industrial application in the second environment - installation restrictions or additional measures may be needed to prevent disturbances.

Pay attention to those systems used in vital signs maintenance, medical applications, commercial transport, nuclear power stations, as well as other applications or loads where a failure in the product can cause serious personal injuries or material damages.

Declaration of conformity CE of the product is at the client disposal under previous request to our headquarters offices.

3.2.1. First and second environment.

The following examples of environment cover the majority of UPS installations.

3.2.1.1. First environment.

Environment that includes residential, commercial and light industrial premises directly connected without intermediate transformers to a public low-voltage mains supply.

3.2.1.2. Second environment.

Second environment: Environment that includes all commercial, light industry and industrial establishments other than those directly connected to a low-voltage mains that supplies buildings used for residential purposes.

3.3. ENVIRONMENT.

This product has been designed to respect the Environment and manufactured in accordance with the **ISO 14001 norm**.

Equipment recycling at the end of its useful life:

Our company commits to use the services of authorised societies and according to the regulations, in order to treat the whole recovered product at the end of its useful life (contact your distributor).

Packaging:

To recycle the packaging, follow the legal regulations in force, in accordance with the particular norm of the country where the equipment is installed.

Batteries:

The batteries mean a serious danger for health and environment. The disposal of them must be done in accordance with the regulations in force.

4. PRESENTATION.

4.1. SYSTEM CONFIGURATION

The Tower UPS is configured by the following part: Power modules, Bypass & Monitoring module, and cabinet with manual Bypass switch. One or several battery strings should be installed to provide backup energy once the utility fails. The UPS structure is shown in Fig. 1.

Fig. 1. UPS Configuration

MÓDULO DE POTENCIA. 4.2.

The power module structure is shown as Fig.2. The power module contains a rectifier, an inverter, and a DC/DC converter for charge and discharge of the external batteries.

Fig. 2. Power module structure

4.3. OPERATION MODE

- The Modular UPS is an on-line, double-conversion UPS that • permits operation in the following modes:
- Normal mode •
- Battery mode •
- Bypass mode
- Maintenance mode (manual bypass) .
- ECO mode .
- Auto-restart mode
- Frequency Converter mode

4.3.1. Normal Mode

The inverter of power modules continuously supply the critical AC load. The rectifier/charger derives power from the AC mains input source and supplies DC power to the inverter while simultaneously FLOAT or BOOST charging its associated backup battery.

Fig. 3. Normal mode operation diagram

Battery Mode 4.3.2.

Upon failure of the AC mains input power, the inverter of power modules, which obtain power from the battery, supply the critical AC load. There is no interruption in power to the critical load upon failure. After restoration of the AC mains input power, the" Normal mode" operation will continue automatically without the necessity of user intervention.

Fig. 4. Battery mode operation diagram

NOTE:

With the function of Battery cold start, the UPS may start without utility.

4.3.3. Bypass Mode

If the inverter overload capacity is exceeded under Normal mode, or if the inverter becomes unavailable for any reason, the static transfer switch will perform a transfer of the load from the inverter to the bypass source, with no interruption in power to the critical AC load. Should the inverter be asynchronous with the bypass, the static switch will perform a transfer of the load from the inverter to the bypass with power interruption to the load. This is to avoid large cross currents due to the paralleling of unsynchronized AC sources. This interruption is programmable but typically set to be less than 3/4 of an electrical cycle, e.g., less than 15ms (50Hz) or less than 12.5ms (60Hz). The action of transfer/re-transfer can also be done by the command through monitor.

Fig. 5. Bypass mode operation diagram

4.3.4. Maintenance Mode (Manual Bypass)

A manual bypass switch is available to ensure continuity of supply to the critical load

when the UPS becomes unavailable e.g. during a maintenance procedure. (See Fig.6).

Fig. 6. Maintenance mode operation diagram

DANGER: During Maintenance mode, dangerous voltages are present on the terminal of input, output and neutral, even with all the modules and the LCD turned off.

4.3.5. ECO Mode

To improve system efficiency, UPS rack system works in Bypass mode at normal time, and inverter is standby. When the utility fails, the UPS transfers to Battery Mode and the inverter powers the loads.

Fig. 7. ECO Mode operation diagram

There is a short interruption time (less than 10ms) when transfer from ECO mode to battery mode, it must be sure that the interruption has no effect on loads.

4.3.6. Auto-restart Mode

The battery may become exhausted following an extended AC mains failure. The inverter shuts down when the battery reaches the End of Discharge Voltage (EOD).

The UPS may be programmed to "System Auto Start Mode after EOD". The system starts after a delay time when the AC mains recovers. The mode and the delay time are programmed by the commissioning engineer.

4.3.7. Frequency Converter Mode

By setting the UPS to Frequency Converter mode, the UPS could present a stable output of fixed frequency (50 or 60Hz), and the bypass static switch is not available.

4.4. UPS STRUCTURE

4.4.1. UPS Configuration

The UPS configuration is provided in Table 1

ITEM	COMPONENTS	QUANT.	REMARK
Cabinet	Circuit Breaker	4	Requisite, factory installed
	Bypass & Monitoring module	1	Requisite, factory installed
	Dust filter	1	Optional.

Table 1. UPS Configuration

4.4.2. UPS Outlook

The UPS outlook is shown as Fig.8

Fig. 8. UPS System outlook

(1) For 1SLC-20-ADAPT/2NB B1 CC

(1) + (2) For 2SLC-20-ADAPT/2NB B1 CC

5. INSTALLATION INSTRUCTION

5.1. LOCATION

As each site has its requirements, the installation instructions in this section are to act as a guide for the general procedures and practices that should be observed by the installing engineer.

5.1.1. Installation Environment

The UPS is intended for indoor installation and uses forced convection cooling by internal fans. Please make sure there is enough space for the UPS ventilation and cooling.

Keep the UPS far away from water, heat and inflammable and explosive, corrosive material. Avoid installing the UPS in the environment with direct sunlight, dust, volatile gases, corrosive material and high salinity.

Avoid installing the UPS in the environment with conductive dirt.

The operating environment temperature for battery is 20° C- 25° C. Operating above 25° C will reduce the battery life, and operation below 20° C will reduce the battery capacity.

The battery will generate a little amount of hydrogen and oxygen at the end of charging; ensure the fresh air volume of the battery installation environment must meet EN50272-2001 requirements.

If external batteries are to be used, the battery circuit breakers (or fuses) must be mounted as close as possible to the batteries, and the connecting cables should be as short as possible.

5.1.2. Site Selection

Ensure the ground or installation platform can bear the weight of the UPS cabinet ,batteries and battery rack.

No vibration and less than 5 degree inclination horizontally.

The equipment should be stored in a room so as to protect it against excessive humidity and heat sources.

The battery needs to be stored in dry and cool place with good ventilation. The most suitable storage temperature is 20 $^{\circ}\text{C}$ to 25°C.

5.1.3. Size and Weight

The size of three views for the UPS cabinet is shown in Fig. 9

CONFIGURATION	POWER	WEIGHT
	(Kva)	(kg)
II/II (Mono. / Mono.)	20 kVA	200 Kg
III/II (Tri. / Mono.)	40 kVA	200 Kg

Table 2. Weight for the cabinet

Fig. 9. Size of the UPS (Unit : mm)

ATTENTION: Ensure there is at least 0.8m before the front of the cabinet so as to easily maintain the power module with the front door fully open and at least 0.5m behind for ventilation and cooling. The room reserved for the cabinet is shown in Fig. 10.

Fig. 10. Room reserved for the cabinet (Unit mm)

5.2. UNLOADING AND UNPACKING

5.2.1. Moving and Unpacking of the Cabinet

The steps to move and unpack the cabinet are as follows:

- 1. Check if any damages to the packing. (If any, contact to the carrier)
- 2. Transport the equipment to the designated site by forklift, as shown in Fig.11

Fig. 11. Transport to the designated site

3. .Open the top plate of the steel-edged wooden case with slotted awl and pier, followed by side boards (see Fig.12).

Fig. 12. Disassemble the case

4. Remove the protective foam around the cabinet (See Fig.13).

Fig. 13. Remove the protective foam

5. Check the UPS.

(a) Visually examine if there are any damages to UPS during transportation. If any, contact to the carrier.

(b) Check the UPS with the list of the goods. If any items are not included in the list, contact to our company or the local office.

- **6.** Dismantle the bolt that connects the cabinet and wooden pallet after disassembly.
- 7. Move the cabinet to the installation position.

ATTENTION: Be careful while removing to avoid scratching the equipment.

5.2.2. Desembalaje del módulo de potencia

The steps to move and unpack the power module are as follows:

Los pasos van a ser los siguientes:

1. The packing case must be placed on the platform smoothly, as is shown in Fig. 14

Fig. 14. Place on platform smoothly

2. Cut the plastic packing belt and scotch tape to open the carton. see Fig. 15

1- Carton

2- Foam packing

Fig. 15. Open the carton

3. Remove the foam cover (See Fig. 16)

4. Take out the UPS with plastic package and dismantle the packaging materials

ATTENTION: The waste materials of unpacking should be disposed to meet the demand for environmental protection.

6. POSICIONAMIENTO A LA UBICACIÓN FINAL

6.1. CABINET

The UPS cabinet has two way of supporting itself: One is to support itself temporarily by the four wheels at the bottom, making it convenient to adjust the position of the cabinet; The other is by anchor bolts to support the cabinet permanently after adjusting the position of the cabinet. The supporting structure is shown in(see figure 17).

Fig. 17. Supporting structure (Bottom view)

The steps to position the cabinet are as follows:

- **1.** Ensure the supporting structure is in good condition and the mounting floor is smooth and strong.
- Retract the anchor bolts by turning them counterclockwise using wrench, the cabinet is then supported by the four wheels.
- **3.** Adjust the cabinet to the right position by the supporting wheels.
- Put down the anchor bolts by turning them clockwise using wrench, the cabinet is then supported by the four anchor bolts.
- **5.** Ensure the four anchor bolts are in the same height and the cabinet is fixed and immovable.
- 6. Positioning done.

ATTENTION: Auxiliary equipment is needed when the mounting floor is not solid enough to support the cabinet, which helps distribute the weight over a larger area. For instance, cover the floor with iron plate or increase the supporting area of the anchor bolts.

6.2. BATTERY

Three terminals (positive, neutral, negative) are drawn from the battery unit and connected to UPS system. The neutral line is drawn from the middle of the batteries in series (See Fig.18).

Fig. 18. Battery string wiring diagram

DANGER: The battery terminal voltage is of more than 200Vdc, please follow the safety instructions to avoid electric shock hazard.

Ensure the positive, negative, neutral electrode is correctly connected from the battery unit terminals to the breaker and from the breaker to the UPS system.

6.3. CABLE ENTRY

Cables can enter the UPS cabinet from the bottom. Cable entry is made possible through a blanking plate fitted at the bottom of the equipment. The cable entry is shown in Fig. 19.

Cable Entry

Fig. 19. Cable entry

6.4. POWER CABLES

6.4.1. Specifications

The «Recommended installation» information for each input and output setting is available with the supplied documentation, manual and/or CD. In that information is shown the circuit diagram, as well as the protection size and minimum cross section of the wires that are connected to the equipment, taking into account the nominal operating voltage. All figures are calculated for a maximum total cable length of 30 m between the distribution panel board, equipment and loads.

For longer lengths correct the cross sections accordingly, in order to avoid dropping voltages, by respecting the Regulations or norms corresponding to the country.

In the own documentation and for each setting, it is available the information for «N» units in parallel, as well as the features of the own «Backfeed protection».

6.4.2. Circuit Breaker

The circuit breakers (CB) for the system are recommended in Table 3.

CONFIG.	MAX NUM Installable Module	POWER	PROTECTION FEATURES
II/II (Mono. / Mono.)	1	10 kVA	32 A 250 V DC
II/II (Mono. / Mono.)	2	20 kVA	63 A 250 V DC
III/II (Tri. / Mono.)	1	20 kVA	63 A 250 V DC
III/II (Tri. / Mono.)	2	40 kVA	100 A 250 V DC

Table 3. Recommended CB

ATTENTION: The CB with RCD (Residual Current Device) is not suggested for the system.

6.4.3. Conexión de los cables de potencia

The steps of connecting power cables are as follows:

- 1. Verify that all the switches of the UPS are completely open and the UPS internal maintenance bypass switch is opened. Attach necessary warning signs to these switches to prevent unauthorized operation.
- **2.** Open the back door of the cabinet, remove the plastic cover. The input and output terminal, battery terminal and protective earth terminal are shown in Fig. 20.

Fig. 20. Commom terminal monophasic /monophasic (II/II).

- **3.** Connect the protective earth wire to protective earth terminal (PE).
- **4.** Connect the AC input supply cables to the Input terminal and AC output supply cables to the Output terminal.
- **5.** Connect the Battery cables to the Battery terminal.
- 6. Check to make sure there is no mistake and re-install all the protective covers.

ATTENTION: Las operaciones de conexionado deben ser realizadas únicamente por personal cualificado.

Cuando existan discrepancias entre el etiquetado y las instruc-ciones de este manual, prevalecerá siempre el etiquetado en el equipo.

Neutral for Input, Bypass, Battery and output.

Fig. 21. connections terminals

ATTENTION: The operations described in this section must be performed by authorized electricians or qualified technical personnel. If you have any difficulties, contact the manufacturer or agency.

ATTENTION: Tighten the connections terminals to enough torque moment, and please ensure correct phase rotation.

The grounding cable and neutral cable must be connected in accordance with local and national codes.

6.5. CONTROL AND COMMUNICATION CABLES

The front panel of the bypass module provides dry contact interface (J2-J11) and communication interface (RS232, RS485, SNMP ,Intelligent card interface and USB port), as it is shown in Fig. 22.

Fig. 22. Dry contact & communication interface.

6.5.1. Battery Warning Output Dry Contact Interface

The input dry contact J2 and J3 can detect the temperature of batteries and environment respectively, which can be used in environment monitoring and battery temperature compensation.

Interfaces diagram for J2 and J3 are shown in Fig.23, the description of interface is in Table 4.

Fig. 23. J2 and J3 for temperature detecting

PORT	NAME	FUNCTION
J2-1	TEMP_BAT	Detection of battery temperature
J2-2	TEMP_COM	common terminal
J3-1	ENV_TEMP	Detection of environmental temperature
J3-2	TEMP_COM	common terminal

Table 4.Description J2 y J3.

Specified temperature sensor is required for temperature detection (R25=5Kohm, B25/50=3275), please confirm with the manufacturer, or contact the local maintenance engineers when placing an order.

Remote EPO Input Port

J4 is the input port for remote EPO. It requires shorting NC and +24V and disconnecting NO and +24V during normal operation, and the EPO is triggered when opening NC and +24V or shorting the NO and +24V. The port diagram is shown in Fig.24, and port description is shown in Table 5.

Fig. 24. Diagram of input port for remote EPO

PORT	NAME	FUNCTION
J4-1	EPO_NC	Trigger EPO when disconnect with J4-2
J4-2	+24V	+24V
J4-3	+24V	+24V
J4-4	EPO_NC	Trigger EPO when connect with J4-3

Table 5.Description J4.

• Generator Input Dry Contact

The default function of J5 is the interface for generator J5 Connect pin 2 of J5 with +24V power supply; it indicates that the generator has been connected with the system. The interface diagram is shown in Fig.25, and interface description is shown in Table 6.

Fig. 25. Diagrama de conexión

PORT	NAME	FUNCTION	
J5-1	+24V_DRY	+24V	
J5-2	EXTERNAL_MAINT_ BYPASS	Auxiliary contact -NO- external manual bypass	
J5-3	GND_DRY	Power ground for +24V	

Table 6.Description J5.

BCB Input Port

Fig. 26. BCB Port

PORT	NAME	FUNCTION
J6-1	BCB_DRIV	BCB contact drive, provides +24V voltage, 20mA drive signal
J6-2	BCB_Status	BCB contact status, connect with the normally open signal of BCB
J7-1	GND	Power ground for +24V
J7-2	BCB_Online	BCB on-line input (normally open) , BCB is on-line when the signal is connecting with J7-1

Table 7. Description J7.

• Bypass Warning Output Dry Contact Interface

Bypass Warning Output Dry Contact Interface J8 is the output dry contact interface, which outputs the bypass warnings, when the loads connected to the output is supplied through it, an auxiliary dry contact signal will be provided via the isolation of a relay. The interface diagram is shown in Fig.27, and description is shown in Table 8

Fig. 27. Bypass warning dry contact interface diagram

PORT	NAME	FUNCTION
J8-1	BYPASS_ALARM_NC	Bypass warning relay (normally closed) will be open during warning
J8-2	BYPASS _ALARM_NO	Bypass warning relay (normally open) will be closed during warning
J8-3	BYPASS _ALARM_GND	Common terminal

Table 8. Description J8.

• General Alarm Output Dry Contact Interface

The default function of J9 is the general alarm output dry contact interface. When one or more warnings are triggered, an auxiliary dry contact signal will be active via the isolation of a relay. The interface diagram is shown in Fig.28, and description is shown in Table 9

Fig. 28. Integrated warning dry contact interface diagram

PORT	NAME	FUNCTION
J9-1	GENERAL_ALARM_NC	Integrated warning relay (normally closed) will be open during warning
J9-2	GENERAL_ALARM_NO	Integrated warning relay (normally open) will be closed during warning
J9-3	GENERAL_ALARM_ GND	Common terminal

Table 9. Description J9.

• Utility Fail Warning Output Dry Contact Interface

The default function of J10 is the output dry contact interface for utility failure warning, when the utility fails, the system will send a utility failure warning information, and provide an auxiliary dry contact signal via the isolation of a relay.

The interface diagram is shown in Fig.29, and description is shown in Table 10.

Fig. 29. utility failure warning dry contact interface diagram

PORT	NAME	FUNCTION
J10-1	UTILITY_FAIL_NC	Mains failure warning relay(normally closed) will be open during warning
J10-2	UTILITY_FAIL_NO	Mains failure warning relay (normally open) will be closed during warning
J10-3	UTILITY_FAIL_GND	Common terminal

Table 10. Description J10.

6.5.2. Communication Interface

RS232, RS485 and USB port: Provide serial data which can be used for commissioning and maintenance by authorized engineers or can be used for networking or integrated monitoring system in the service room.

SNMP: Used on site installation for communication (Optional).

Intelligent card interface: Extension dry contact interface (Optional).

7. LCD PANEL

7.1. INTRODUCTION

This chapter introduces the functions and operator instructions of the operator control and display panel in detail, and provides LCD display information, including LCD display types, detailed menu information, prompt window information and UPS alarm information.

Fig. 30. Control and display panel for cabinet.

LED INDICATOR	FUNCTION
REC	Rectifier indicator
BAT	battery indicator
ВҮР	Bypass indicator
INV	Inverter indicator
OUTPUT	Load indicator
STATUS	status indicator

Table 11. Led indicator

7.2. LED INDICATOR

INDICATOR	STATE	DESCRIPTION
Rectifier	Steady green	Rectifier normal for all modules
indicator	Flashing green	Rectifier normal for at least one module, mains normal
	Steady red	Rectifier fault
	Flashing red	Mains abnormal for at least one module
	Off	Rectifier not operating
Battery	Steady green	Battery charging
indicator	Flashing green	Battery discharging
	Steady red	Battery abnormal (battery failure, no battery or battery reversed) or battery converter abnormal (failure, over current or over temperature), EOD
	Flashing red	Battery low voltage
	Off	Battery and battery converter normal, battery not charging
Bypass	Steady green	Load supplied by bypass
indicator	Steady red	Bypass abnormal or out of normal range, or static bypass switch fault
	Flashing red	Bypass voltage abnormal
	Off	Bypass normal
Inverter	Steady green	Load supplied by inverter
indicator	Flashing green	Inverter on, start, synchronization or standby (ECO mode) for at least one module
	Steady red	System output not supplied by inverter, inverter fault for at least one module.
	Flashing red	System output supplied by inverter, inverter fault for at least one module.
	Off	Inverter not operating for all modules
Load	Steady green	UPS output ON and normal
indicator	Steady red	UPS overload time is out, or output short, or output no power supply
	Flashing red	Overload output of UPS
	Off	No output of UPS
Status	Steady green	Normal operation
indicator	Steady red	Failure

Table 12. Status description of indicators.

ALARM	DESCRIPTION
Two short alarm with a long one	when system has general alarm (for example: AC fault),
Continuous alarm	When system has serious faults (for example: fuse or hardware fault)

 Table 13.
 Description of audible alarm

7.3. CONTROL AND OPERATION KEYS

Control and operation keys include four keys, which are used together with LCD touch screen. The functions description is shown in Table 14 $\,$

BUTTON	FUNCTION
EPO	Long press, cut off the load power (shut down the rectifier, inverter, static bypass and battery)
TAB	Transfer
ENTER	Confirm
ESC	Quit

Table 14. Functions of Control and operation keys

7.4. PANTALLA TÁCTIL LCD

After the monitoring system starts self-test, the system enters the home page, following the welcome window. The home page is shown in Fig.31.

Home page consists of System Information Window, Menu Window and Current Command and Record Menu.

- 1- System information window
- 2- Menu Window.
- 3- Current command and record menu

Fig. 31. Home page

ICON	DESCRIPTION
BYP	Bypass parameter(voltage, current, PF, frequency)
I/P	Main input parameter(voltage, current, PF, frequency)
	Module information
abili	History log, system information
	Function setting (display calibration, password setting, time setting, date format, communication protocol and language setting), system setting (used only for manufacturer)
+ -	Battery data, battery parameter setting (used for service engineer)
	Test (battery self-test, battery maintenance)
	Functional keys used by service staff (fault clear, history log clear, mute on or off, manual transfer to bypass or escape from bypass), user setting (system mode, machine number, system ID, output voltage adjustment, frequency slew rate, frequency range)
0/P	Output parameter(voltage, current, PF, frequency)
Ŵ	Load(Apparent load, active load, reactive load, load percent)
OÌ	Mute off, mute on
**	Page up/down

Table 15. Description of LCD Icons

Touch the icon, system enters the corresponding page; take the

(Main Input) for example, as shown in Fig. 32

ARM I-I-20KVA	N=2(S)	12:00
Phase Voltage(V)	Phase Current(A)	Main Input
A 223.4	A 18.3	
B 223.2	B 18.3	
C 223.3	C 18.3	
Frequency(Hz)	Power Factor	
A 50.01	A 0.99	
B 50.01	в 0.99	
C 50.01	C 0.99	•
	<u> </u>	
		-
		*

Fig. 32. Main input page

Touch the module , the system enters the page of modules. In the corresponding page 32 the LCD will display the information on the module, as shown in Fig.33.

Fig. 33. Module Page

Touch Touch to view the data of the selected power module Main Input ;

to view the data of the selected power module,

The LCD will go to sleep in 2 minutes during which time if there are no warnings or faults. Tap the screen of button to wake the screen up

7.5. SYSTEM INFORMATION WINDOW

System Information Window displays the current time and UPS model, as is shown in the following Table 16

7.6. MENU WINDOW

The Menu Window displays the menu name of data window, while the data window displays the related contents of selected menu in menu window. Select UPS menu and data window to browse related parameters of UPS and set related functions. The details are given in Table 16.

MENU NAME	MENU ITEM	MEANING	
Main input	V phase(V)	Voltage	
	I phase(A)	Current	
	Freq.(Hz)	Frequency	
	PF	Power factor	
Bypass	V phase(V)	Voltage	
input	Freq. (Hz)	Frequency	
	I phase(A)	Current	
	PF	Power factor	
Output	V phase(V)	Voltage	
	I phase(A)	Current	
	Freq. (Hz)	Frequency	
	PF	Power factor	
This UPS	Sout (kVA)	Apparent Power	
module's	Pout (kW)	Active Power	
10ad	Qout (kVAR)	Reactive Power	
	Load (%)	Load percent	
Battery data	Environmental Temp	Environmental Temp	
	Battery voltage(V)	Positive and negative battery voltage	
	Battery current A)	Positive and negative battery current	
	Battery Temp (°C)	Battery Temperature	
	Remaining Time (Min.)	Remained battery backup time	
	Battery capacity (%)	Remained battery capacity	
	battery boost charging	Battery is working in boost charging mode	
	battery float charging	Battery is working in float charging mode	
	Battery disconnected	Battery is not connected	
Current alarm		Display all current alarm. The alarms are displayed on LCD	
History log		Display all history logs.	
Settings	Display calibration	Adjust the accuracy of LCD display	
	Date format set	MONTH-DATE-YEAR and YEAR-MONTH-DATE formats can be selected	
	Date & Time	Date/Time set	
	Language set	User can set the language	
	Communication set	/	
	Control password 1 set	User can modify control password 1	

MENU NAME	MENU ITEM	MEANING
Comando/orden	Battery maintenance test	This test will lead to the battery being partly discharged to activate battery until battery voltage is low. Bypass must be in normal condition, the battery capacity should be above 25%.
	Battery self-check test	UPS transfer to battery discharge mode to test if the battery is normal. Bypass must be in normal condition, the battery capacity should be above 25%.
	Stop testing	Manually Stop the test including maintenance test, capacity test
Información del	Monitoring software version	Monitoring software version
sistema SAI	Rectified software version	Rectifier software version
	Inverted software version	Inverter software version
	Serial No.	The serial NO set when delivered from the factory
	Rated information	System rated information
	Module model	Module model

Table 16. Description of UPS Menu

7.7. EVENT LIST

The following	Table 17	gives events of	of UPS History Log
---------------	----------	-----------------	--------------------

STRING		DECODIDION	
SEQUENCE	LUD DISPLAY	DESCRIPTION	
1	Load On UPS-Set	Load On UPS	
2	Load On Bypass-Set	Load On Bypass	
3	No Load-Set	No Load (Output Power Lost)	
4	Battery Boost-Set	Charger is Boosting Battery Voltage	
5	Battery Float-Set	Charger is Floating Battery Voltage	
6	Battery Discharge-Set	Battery is Discharging	
7	Battery Connected-Set	Battery cables Connected	
8	Battery Not Connected-Set	Battery cables Disconnected.	
9	Maintenance CB Closed-Set	Maintenance CB is Closed	
10	Maintenance CB Open-Set	Maintenance CB is Open	
11	EPO-Set	Emergency Power Off	
12	Module On Less-Set	Valid Inverter capacity is less then the load capacity	
13	Module On Less-Clear	Incident above disappears	
14	Generator Input-Set	Generator as the Ac Input Source	
15	Generator Input-Clear	Incident above disappears	
16	Utility Abnormal-Set	Utility (Grid) Abnormal	
17	Utility Abnormal-Clear	Incident above disappears	
18	Bypass Sequence Error-Set	Bypass voltage Sequence is reverse	
19	Bypass Sequence Error-Clear	Incident above disappears	
20	Bypass Volt Abnormal-Set	Bypass Voltage Abnormal	
21	Bypass Volt Abnormal-Clear	Incident above disappears	
22	Bypass Module Fail-Set	Bypass Module Fail	
23	Bypass Module Fail-Clear	Incident above disappears	
24	Bypass Overload-Set	Bypass Over load	
25	Bypass Overload-Clear	Incident above disappears	
26	Bypass Overload Tout-Set	Bypass Over Load Timeout	

STRING		DECODIDETION
SEQUENCE	LCD DISPLAY	DESCRIPTION
27	Byp Overload Tout-Clear	Incident above disappears
28	Byp Freq Over Track-Set	Bypass Frequency Over Track Range
29	Byp Freq Over Track-Clear	Incident above disappears
30	Exceed Tx Times Lmt-Set	Transfer times (from inverter to bypass) in 1 hour exceed the limit.
31	Exceed Tx Times Lmt-Clear	Incident above disappears
32	Output Short Circuit-Set	Output shorted Circuit
33	Output Short Circuit-Clear	Incident above disappears
34	Battery EOD-Set	Battery End Of Discharge
35	Battery EOD-Clear	Incident above disappears
36	Battery Test-Set	Battery Test Starts
37	Battery Test OK-Set	Battery Test OK
38	Battery Test Fail-Set	Battery Test fails
39	Battery Maintenance-Set	Battery Maintenance Starts
40	Batt Maintenance OK-Set	Battery maintenance succeeds
41	Batt Maintenance Fail-Set	Battery maintenance fails
42	Module Inserted-Set	N# Power Module joins the system
43	Module Exit-Set	N# Power Module quits the system.
44	Rectifier Fail-Set	N# Power Module Rectifier Fails
45	Rectifier Fail-Clear	Incident above disappears
46	Inverter Fail-Set	N# Power Module Inverter Fail
47	Inverter Fail-Clear	Incident above disappears
48	Rectifier Over TempSet	N# Power Module Rectifier Over Temperature
49	Rectifier Over TempClear	Incident above disappears
50	Fan Fail-Set	N# Power Module Fan Fail
51	Fan Fail-Clear	Incident above disappears
52	Output Overload-Set	N# Power Module Output Over Load
53	Output Overload-Clear	Incident above disappears
54	Inverter Overload Tout-Set	N# Power Module Inverter Over Load Timeout
55	INV Overload Tout-Clear	Incident above disappears
56	Inverter Over TempSet	N# Power Module Inverter Over Temperature
57	Inverter Over TempClear	Incident above disappears
58	Un UPS Inhibited-Set	Inhibit system transfer from bypass to UPS (inverter)
59	Un UPS Inhibited-Clear	Incident above disappears
60	Manual Transfer Byp-Set	I ransfer to bypass manually
61	Ivianual Transfer Byp-Set	
02	Esc Manual Bypass-Set	Escape transfer to bypass manually command
63	Battery Volt Low-Set	Battery Voltage Low
04 CE	Ballery Voll Low-Clear	Incluent above disappears
CC	Ballery neverse-Sel	ballery pole (positive and negative are reverse)
00	Ballery Reverse-Clear	Incident above disappears
67	Inverter Protect-Set	DC Bus)
68	Inverter Protect-Clear	Incident above disappears
69	Input Neutral Lost-Set	Input Grid Neutral Lost
70	Bypass Fan Fail-Set	Bypass Module Fan Fail
71	Bypass Fan Fail-Clear	Incident above disappears
72	Manual Shutdown-Set	N# Power Module Manually Shutdown

STRING			
SEQUENCE	LCD DISPLAY	DESCRIPTION	
73	Manual Boost Charge-Set	Manually Battery Boost Charge	
74	Manual Float Charge-Set	Manually Battery Float Charge	
75	UPS Locked-Set	Inhibit to shut down the UPS	
76	Parallel Cable Error-Set	Parallel cable in error	
77	Parallel Cable Error-Clear	Incident above disappears	
78	Lost N+X Redundant	Lost N+X Redundant	
79	N+X Redundant Lost-Clear	Incident above disappears	
80	EOD Sys Inhibited	System is inhibited to supply after the battery is EOD (end of discharging)	
81	Power Share Fail-Set	Power share is not in balance	
82	Power Share Fail-Clear	Incident above disappears	
83	Input Volt Detect Fail-Set	Input Voltage is abnormal	
84	Input Volt Detect Fail-Clear	Incident above disappears	
85	Battery Volt Detect Fail-Set	Battery Voltage is abnormal	
86	Batt Volt Detect Fail-Clear	Incident above disappears	
87	Output Volt Fail-Set	Output Voltage is abnormal	
88	Output Volt Fail-Clear	Incident above disappears	
89	Outlet Temp. Error-Set	Outlet Temperature is abnormal	
90	Outlet Temp. Error-Clear	Incident above disappears	
91	Input Curr Unbalance-Set	Input current is not balance	
92	Input Curr Unbalance-Clear	Incident above disappears	
93	DC Bus Over Volt-Set	DC bus over Voltage	
94	DC Bus Over Volt-Clear	Incident above disappears	
95	REC Soft Start Fail-Set	Rectifier soft start fails	
96	REC Soft Start Fail-Clear	Incident above disappears	
97	Relay Connect Fail-Set	Relay in open circuit	
98	Relay Connect Fail-Clear	Incident above disappears	
99	Relay Short Circuit-Set	Relay shorted	
100	Relay Short Circuit-Clear	Incident above disappears	
101	No Inlet Temp. Sensor-Set	The inlet temperature sensor is not connected or abnormal	
102	No Inlet Temp Sensor-Clear	Incident above disappears	
103	No Outlet Temp. Sensor-Set	The Outlet temperature sensor is not connected or abnormal	
104	No Outlet TmpSensor-Clear	Incident above disappears	
105	Inlet Over TempSet	Inlet over temperature	
106	Inlet Over TempClear	Incident above disappears	

Table 17. List of History Log

8. OPERATIONS

8.1. UPS START-UP

8.1.1. Start from Normal Mode

The UPS must be started up by commissioning engineer after the completeness of installation. The steps below must be followed:

- **1.** Ensure all the circuit breakers are open.
- **2.** Close the input circuit breakers and the system starts initializing. If the system has dual inputs close both of the breakers.
- **3.** The LCD in front of the cabinet is lit up. The system enters the home page, as shown in Fig.31.
- **4.** Notice the energy bar in the home page, and pay attention to the LED indicators. The rectifier flashes indicating the rectifier is starting up. The LED indicators are listed below in Table 18.

INDICATOR STATUS		INDICATOR	STATUS
Rectifier	green flashing	Inverter	off
Battery	red	Load	off
Bypass	off	Status	red

Table 18. Rectifier starting up

 After 30S, the rectifier indicator goes steady green, presenting the finishing of rectification and bypass static switch closes then the inverter is starting up. The LED indicators are listed below in Table.19.

INDICATOR	STATUS	INDICATOR	STATUS
Rectifier	green	Inverter	green flashing
Battery	red	Load	green
Bypass	green	Status	red

Table 19. Inverter starting up

 The UPS transfers from the bypass to inverter after the inverter goes normal. The LED indicators are listed below in Table 20.

INDICATOR	STATUS	TATUS INDICATOR	
Rectifier	green	green Inverter	
Battery	red	Load	green
Bypass	off	Status	red

Table 20. Supplying the load

 The UPS is in Normal Mode. Close the battery circuit breakers and the UPS starts charging the battery. The LED indicators are listed below in Table 21.

INDICATOR	STATUS	INDICATOR	STATUS
Rectifier	green	Inverter	green
Battery	green	Load	green
Bypass	off	Status	green

Table 21. Modo normal de trabajo del sistema.

- 8. Close the output circuit breaker for the load
- **9.** it finishes the starting up for the UPS.

NOTE:

- When the system starts, the stored setting will be loaded.
- Users can browse all incidents during the process of the starting up by checking the menu Log.
- Information of each power module can be viewed by the keys in the front of it.

8.1.2. Puesta en marcha a partir de las baterías.

The start for battery model is referring to battery cold start. The steps for the start-up are as follows:

- **1.** Confirm the battery is correctly connected; close the external batterycircuit breakers.
- **2.** Press the red button for the battery cold start (See Fig.34). The system is than powered by the battery.

1- Battery Cold start

Fig. 34. The position of the battery cold start button

- **3.** After that, the system is starting up following steps 3 in section 8.1.1 and the system transfers to battery mode in 30S.
- **4.** Close the external output power supply isolation to supply the load, and the system is working on battery model.

8.2. PROCEDURE FOR SWITCHING BETWEEN OPERATION MODES

8.2.1. Switching the UPS into Battery Mode from Normal Mode

The UPS transfers to Battery model immediately after input circuit breaker disconnects from the utility.

8.2.2. Switching the UPS into Normal Mode from Bypass Mode

Manual Byp

to transfer the system to Bypass Mode.

WARNING: Ensure the bypass is working normally before transferring to bypass mode. Or it may cause failure.

8.2.3. Switching the UPS into Normal Mode from Bypass Mode

Follow the path by touching , and then touching

the system transfer to Normal Mode

Normally, the system will transfer to the Normal mode automatically. This function is used when the frequency of the bypass is over track and when the system needs to transfer to Normal mode by manual.

8.2.4. Switching the UPS into Maintenance Bypass Mode from Normal Mode

These following procedures can transfer the load from the UPS inverter output to the maintenance bypass supply, which is used for maintaining the bypass module.

- 1. Transfer the UPS into Bypass mode.
- Open the battery breaker and close the maintenance bypass. And the load is powered through maintenance bypass and static bypass.
- **3.** Pull out the bypass module and the load is powered through maintenance bypass.

WARNING: Before making this operation, read messages on LCD display to be sure that bypass supply is regular and the inverter is synchronous with it, so as not to risk a short interruption in powering the load.

DANGER: If you need to maintain the power module, wait for 10 minutes to let the DC bus capacitor fully discharge before removing the cover.

8.2.5. Switching the UPS into Normal Mode from Maintenance Bypass Mode

These following procedures can transfer the load from the Maintenance Bypass mode to inverter output.

- 1. The bypass turns on 30S after the LED touch screen goes on, the bypass indicator goes green and the load is powered through maintenance bypass and static bypass.
- **2.** Turn off the maintenance bypass switch and the load is powered through bypass. The rectifier starts followed by the inverter.
- 3. After 60S, the system transfers to Normal mode.

8.3. BATTERY MAINTENANCE

If the battery is not in use for a long time, it is necessary to test the condition of the battery. Two methods are provided:

Discharging by manual. Enter the menu shown in Fig.8.2 and touch the icon "Battery maintenance", the system transfers into the Battery mode for discharging. The system will stop charging when the battery is 20% in capacity or in low voltage. Users can stop the discharging by touching the "Stop Test" icon

StopTest

Fig. 35. Battery maintenance

ATTENTION: The load for the auto maintenance discharge should be 20%-100%.

8.4. EPO

The EPO button located in the operator control and display panel (with cover to avoid disoperation, see Fig.5-5) is designed to switch off the UPS in emergency conditions (e.g., fire, flood, etc.). To achieve this, just press the EPO button, and the system will turn off the rectifier, inverter and stop powering the load immediately (including the inverter and bypass output), and the battery stops charging or discharging.

If the input utility is present, the UPS control circuit will remain active; however, the output will be turned off. To completely isolate the UPS, users need to open the external mains input supply to the UPS

ATTENTION: When the EPO is triggered, the load is not powered by the UPS. Be careful to use the EPO function.

Fig. 36. EPO Button

8.5. INSTALLATION OF PARALLEL OPERATION SYSTEM

The system can have three UPS cabinets in parallel, which can extend to a capacity of total 120KVA.

Two UPS cabinets are connected as is shown in Fig.37

Fig. 37. Parallel diagram

The parallel board is located at the back of the UPS cabinet, whose name is PS1203-TF4 as is shown in Fig.38

Battery Cold Start

Fig. 38. Location of the Parallel board

The control cables for the parallel operation must be connected with all single devices to form a closed loop, as is shown in Fig.39.

Fig. 39. Parallel connection

For more details of parallel operation, please refer to the "Instruction for Parallel Operation of Tower UPS".

9. MAINTENANCE

This chapter introduces UPS maintenance, including the maintenance instructions of power module and monitoring bypass module and the replacement method of dust filter.

9.1. PRECAUTIONS

Only maintaining engineers can maintain the power module and monitoring bypass module.

- 1. The power module should be disassembled from top to bottom, so as to prevent any inclination from high gravity centre of the cabinet.
- 2. To ensure the safety before maintaining power module and bypass module, use a multimeter to measure the voltage between operating parts and the earth to ensure the voltage is lower than hazardous voltage, i.e. DC voltage is lower than 60Vdc, and AC maximum voltage is lower than 42.4Vac.
- **3.** Bypass module is not recommended to hot swap; only when UPS is in Maintenance Bypass Mode or UPS is completely powered off, the bypass module can be disassembled.
- **4.** Wait 10 minutes before opening the cover of the power module or the bypass after pulling out from the Cabinet.

9.2. INSTRUCTION FOR MAINTAINING POWER MODULE

Confirm the UPS is operating in Normal Mode and the bypass is working normally before pulling out the power module needed to be repaired.

- 1. Ensure the remaining power module will not be overloaded.
- 2. Power off the module.
- **3.** Remove the mounting screw on the two front sides of the power module and pull out the module by two persons.
- 4. Wait 10 mins before opening the cover for repairing.
- **5.** After the repairing is done, push the power module into the cabinet following the steps in section 3.3.2 and the power module will automatically join the system.

10. PRODUCT SPECIFICATION

This chapter provides the specifications of the product, including environmental characteristics mechanical characteristics and electrical characteristics.

10.1. APPLICABLE STANDARDS

The UPS has been designed to conform to the following European and international standards:

ITEM	NORMATIVE
General safety requirements for UPS used in operator access areas	EN-IEC62040-1-1/AS 62040-1-1
Electromagnetic compatibility (EMC) requirements for UPS	EN-IEC62040-2/AS 62040-2(C3)
Method of specifying the performance and test requirements of UPS	EN-IEC62040-3/AS 62040-3 (VFI SS 111)

Table 22. Compliance with European and InternationalStandards

NOTE:

The above mentioned product standards incorporate relevant compliance clauses with generic IEC and EN standards for safety (IEC/EN/AS60950), electromagnetic emission and immunity (IEC/EN/ AS61000 series) and construction (IEC/EN/ AS60146 series and 60950).

10.2. ENVIRONMENTAL CHARACTERISTICS

ITEM	Un.	NORMATIVE
Acoustic noise level at 1 meter	dB	65dB @ 100% load, 62dB @ 45% load
Altitude of Operation	m	≤1000, load derated 1%. 100m from 1000m and 2000m
Relative Humidity	%	0-95,non condensing
Operating Temperature	Ca	0-40,Battery life is halved for every 10°C increase above 20°C
UPS Storage Temperature	Cª	-40 a 70 (UPS)

Table 23. Environmental Characteristics

10.3. MECHANICAL CHARACTERISTIC

MODULE	Un.	10 20	
Configuration input-output		Mon/Mon	Tri/Mon
Dimension W×D×H	mm	460×790×134	
Weight	Kg.	34	34

Table 24. Mechanical Characteristics for Power Module

ITEM	Un.	20/10	20/20	40/20	40/40
Dimension W×D×H	mm		600×98	30×950	
Weight	kg	166	200	166	200

Table 25. Mechanical Characteristics for Cabinet

10.4. ELECTRICAL CHARACTERISTICS (INPUT RECTIFIER)

ITEM	Un.	PARAMETER
Grid System	/	3 Phases + Neutral + Ground
Rated AC Input Voltage	Vac	380/400/415(three-phase and sharing neutral with the bypass input)
Rated Frequency	Hz	50/60Hz
Input voltage range		304-478Vac (Line-Line),full load 228V-304Vac (Line- Line),load decrease linearly according to the min phase voltage
Input Frequency range	Hz	40~70
Input Power factor	PF	>0.99
THDI	THDI %	<3% (full Linear Load)

Table 26. Rectifier AC input Mains

10.5. CARACTERÍSTICAS ELÉCTRICAS (BUS DE CONTINUA DC)

ÍTEM	Un.	PARÁMETROS	
Battery bus voltage	Vdc	Rated: ±120V	
Quantity of lead-acid cells	Nominal	40=[1 battery(12V)] ,240=[1 battery(2V)]	
Float charge voltage	V/cell (VRLA)	2,25V/ celda (seleccionable desde 2,2- 2,35V/ celda). Modo de carga, corriente constante y tensión constante	
Temperature compensation	mV/< /cl	3.0 (selectable:0~5.0)	
Ripple voltage	%	≤1	
Ripple current	%	≤5	
Equalized charge voltage	VRLA	2.4V/cell(selectable from : 2.30V/ cell~2.45V/cell) Constant current and constant voltage charge mode	
Final discharging voltage	V/ celda (VRLA)	1.65V/cell(selectable from: 1.60V/cell~1.750V/cell) @0.6C discharge current 1.75V/cell (selectable from: 1.65V/cell~1.8V/cell) @0.15C discharge current (EOD voltage changes linearly within the set range according to discharge current)	
Battery Charge	V/ celda	2.4V/cell(selectable from : 2.3V/ cell~2.45V/cell)	
Battery Charging Power Max Current	kW	10%* UPS capacity (selectable from : 0~20% * UPS capacity)	

10.6. ELECTRICAL CHARACTERISTICS (INVERTER OUTPUT)

ÍTEM	Un.	PARÁMETROS
Rated AC voltage	Vac	220/230/240
Rated Frequency	Hz	50/60
Frequency Regulation	Hz	50/60Hz±0.1%
Voltage precision	%	±1.5(0~100% linear load)
Overload	%	110%, 60min; 125%,10min; 150%,1min; >150%,200ms
Synchronized Range	Hz	Settable, ±0.5Hz ~ ±5Hz, default ±3Hz
Synchronized Slew Rate	Hz	Settable, 0.5Hz/S ~ 3Hz/S, default 0.5Hz/S
Output Power Factor	PF	0,8
Transient Response	%	<5% for step load (20% - 80% -20%)
Transient recovery		< 30ms for step load (0% - 100% -0%)
Output Voltage THDu		<1% from 0% to 100% linear load <6% full non-linear load according to IEC/ EN62040-3

 Table 28.
 Inverter Output (To critical load)

Table 27. Battery

ITEM	Un.	VALUE
Rated AC voltage	Vac	220/230/240 (One phase)
Overload	%	110% Long term operation; 110%~125% for 5min; 125%~150% for 1min; 150%~400% for 1s; >400% ,less than 200ms
Current rating of neutral cable	A	1,7 x ln
Rated frequency	Hz	50/60
Switch time (between bypass and inverter)	ms	Synchronized transfer: Oms
Bypass voltage range	%	Settable, default -20%-+15% Up limited: +10%, +15%, +20%, +25% Down limited: -10%, -15%, -20%, -30%, -40%
Bypass frequency range	Hz	Settable, ±1 Hz, ±3 Hz, ±5 Hz
Synchronized Range	Hz	Settable ±0.5Hz~±5Hz, default ±3Hz

10.7. ELECTRICAL CHARACTERISTICS (BYPASS MAINS INPUT)

 Table 29.
 Bypass Mains Input

10.8. EFFICIENCY

ITEM	UNIT	VALUE		
Normal mode(dual conversion)	%	94 (Mon./Mon.), 93 (Tri./Mon.)		
ECO Mode	%	98		
Battery dischargin voltage 480Vdc and	ng efficiency (battery at nominal nd full-rated linear load)			
Battery mode	%	93		

Table 30. Efficiency

10.9. DISPLAY AND INTERFACE

ТҮРЕ	DESCRIPTION
Display	LED + LCD +Color touch screen
Interface	Standard:RS232, RS485, USB, Dry Contact Option: SNMP,AS/400

Table 31. Pantalla e Interfaces

Avda. de la Serra 100 08460 Palautordera BARCELONA Tel. +34 93 848 24 00 Fax +34 93 848 22 05 services@salicru.com SALICRU.COM

The Technical Service & Support (T.S.S.) network, Commercial network and warranty information are available in website: www.salicru.com

Product Range

Uninterruptible Power Supplies (UPS) Lighting Flow Dimmer-Stabilisers DC Power Systems Static Inverters Photovoltaic Inverters Voltage stabilisers

Salicru_SA

www.linkedin.com/company/salicru

